Functional characterization of ACDP2 (ancient conserved domain protein), a divalent metal transporter.

نویسندگان

  • Angela Goytain
  • Gary A Quamme
چکیده

We have begun to identify and characterize genes that are differentially expressed with low magnesium. One of these sequences conformed to the ancient conserved domain protein, ACDP2. Real-time RT-PCR of mRNA isolated from distal epithelial cells cultured in low-magnesium media relative to normal media and in kidney cortex of mice maintained on low-magnesium diets compared with those animals consuming normal diets confirmed that the ACDP2 transcript is responsive to magnesium. Mouse ACDP2 was cloned from mouse distal convoluted tubule cells, expressed in Xenopus laevis oocytes, and studied with two-electrode voltage-clamp studies. When expressed in oocytes, ACDP2 mediates saturable Mg2+ uptake with a Michaelis constant of 0.56 +/- 0.05 mM. Transport of Mg2+ by ACDP2 is rheogenic, is voltage-dependent, and is not coupled to Na+ or Cl- ions. Expressed ACDP2 transports a range of divalent cations: Mg2+, Co2+, Mn2+, Sr2+, Ba2+, Cu2+, and Fe2+; accordingly, it is a divalent cation transporter with wide substrate selectivity. The cations Ca2+, Cd2+, Zn2+, and Ni2+ did not induce currents, and only Zn2+ effectively inhibited transport. The ACDP2 transcript is abundantly present in kidney, brain, and heart with lower amounts in liver, small intestine, and colon. Moreover, ACDP2 mRNA is upregulated with magnesium deficiency, particularly in the distal convoluted tubule cells, kidney, heart, and brain. These studies suggest that ACDP2 may provide a regulated transporter for Mg2+ and other divalent cations in epithelial cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Splice-variant 1 of the ancient domain protein 2 (ACDP2) complements the magnesium-deficient growth phenotype of Salmonella enterica sv. typhimurium strain MM281.

Evidence arguing for the existence of genes encoding for proteins directly involved in the transport of Mg2+ through the cytoplasmic membrane have accumulated over the last few years. Gene ACDP2 (ancient conserved domain protein 2; old name CNNM2, cyclin M2) is one such gene. ACDP2 is a distant homologue of the bacterial gene corC, which is known to be involved in cobalt resistance. We have pre...

متن کامل

Physical interaction and functional coupling between ACDP4 and the intracellular ion chaperone COX11, an implication of the role of ACDP4 in essential metal ion transport and homeostasis

Divalent metal ions such as copper, manganese, and cobalt are essential for cell development, differentiation, function and survival. These essential metal ions are delivered into intracellular domains as cofactors for enzymes involved in neuropeptide and neurotransmitter synthesis, superoxide metabolism, and other biological functions in a target specific fashion. Altering the homeostasis of t...

متن کامل

Iron transport by Nramp2/DMT1: pH regulation of transport by 2 histidines in transmembrane domain 6.

Mutations at natural resistance-associated macrophage protein 1 (Nramp1) impair phagocyte function and cause susceptibility to infections while mutations at Nramp2 (divalent metal transporter 1 [DMT1]) affect iron homeostasis and cause severe microcytic anemia. Structure-function relationships in the Nramp superfamily were studied by mutagenesis, followed by functional characterization in yeast...

متن کامل

Characterization of an integral protein of the brush border membrane mediating the transport of divalent metal ions.

The transport of Fe(2+) and other divalent transition metal ions across the intestinal brush border membrane (BBM) was investigated using brush border membrane vesicles (BBMVs) as a model. This transport is an energy-independent, protein-mediated process. The divalent metal ion transporter of the BBM is a spanning protein, very likely a protein channel, that senses the phase transition of the B...

متن کامل

Crystal Structure and Conformational Change Mechanism of a Bacterial Nramp-Family Divalent Metal Transporter.

The widely conserved natural resistance-associated macrophage protein (Nramp) family of divalent metal transporters enables manganese import in bacteria and dietary iron uptake in mammals. We determined the crystal structure of the Deinococcus radiodurans Nramp homolog (DraNramp) in an inward-facing apo state, including the complete transmembrane (TM) segment 1a (absent from a previous Nramp st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physiological genomics

دوره 22 3  شماره 

صفحات  -

تاریخ انتشار 2005